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SUMMARY: Causal inference has been increasingly reliant on observational studies with rich covariate information. To build

tractable causal procedures, such as the doubly robust estimators, it is imperative to first extract important features from high or

even ultra-high dimensional data. In this paper, we propose causal ball screening for confounder selection from modern ultra-high

dimensional data sets. Unlike the familiar task of variable selection for prediction modeling, our confounder selection procedure

aims to control for confounding while improving efficiency in the resulting causal effect estimate. Previous empirical and theoretical

studies suggest excluding causes of the treatment that are not confounders. Motivated by these results, our goal is to keep all the

predictors of the outcome in both the propensity score and outcome regression models. A distinctive feature of our proposal is

that we use an outcome model-free procedure for propensity score model selection, thereby maintaining double robustness in the

resulting causal effect estimator. Our theoretical analyses show that the proposed procedure enjoys a number of properties, including

model selection consistency and point-wise normality. Synthetic and real data analysis show that our proposal performs favorably

with existing methods in a range of realistic settings. Data used in preparation of this article were obtained from the Alzheimers

Disease Neuroimaging Initiative (ADNI) database.
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1. Introduction

Modern observational databases hold great promise for drawing causal conclusions. In these stud-

ies, both the treatment and outcome of interest are often associated with some baseline covariates,

called confounders. Insufficient adjustment for confounders leads to biased causal effect estimates.

In their seminal work, Rosenbaum and Rubin (1983) showed that the propensity score, defined as

the probability of assignment to a particular treatment conditional on baseline covariates, can be

used to remove bias due to observed confounders. Robins et al. (1994) proposed a doubly robust

method that combines outcome regression and propensity score modeling. Their estimator has

been shown to enjoy favorable theoretical properties under correct specification of the outcome

regression and/or propensity score models.

Traditionally, specifications of the propensity score and outcome regression models are typically

driven by expert knowledge. However, this is becoming increasingly difficult in modern applica-

tions, where researchers are often presented with high or even ultra-high dimensional covariates.

For example, a popular database for studying potential risk factors of Alzheimer’s disease is avail-

able through the Alzheimers Disease Neuroimaging Initiative (ADNI). The ADNI study collects

rich covariate information such as clinical and behavioral covariates, and genetic information in-

cluding millions of SNPs. The dimension of covariates p is much larger than the sample size n. This

is known as ultra-high dimensional data in the literature, as classical variable selection methods for

high-dimensional data such as the Lasso are not feasible due to computational complexity.

In response to these challenges, there has been a growing interest in developing data-driven

procedures for covariate selection in causal inference. A central aim of these methods is to reduce

bias and improve efficiency in the final causal effect estimator (Witte and Didelez, 2019). This

is in sharp contrast to covariate selection in prediction modeling (e.g. Tibshirani, 1996; Fan and

Lv, 2008), where the goal is to find a sparse representation of the association structure with good

prediction accuracy. In particular, a good prediction model for the propensity score includes all
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strong predictors of the treatment. However, theoretical results and empirical evidence imply that

inclusion of variables associated with treatment but not the outcome may inflate the variance of the

resulting causal effect estimates (e.g. Brookhart et al., 2006; de Luna et al., 2011; Schnitzer et al.,

2016; Rotnitzky and Smucler, 2020). Such variables are commonly referred to as instrumental

variables (IVs). In particular, Hahn (1998, 2004) showed that the semiparametric efficiency bound

for estimating the average causal effect may be reduced if some covariates are known to be

instrumental variables. Although selection of instrumental variables may lead to non-uniform

inference (e.g. Leeb and Pötscher, 2005; Moosavi et al., 2021), it has been reported that in many

practical settings, selection of instrumental variables improves the estimate in a mean squared error

sense (Brookhart et al., 2006); see the end of Section 4 for a detailed discussion.

Motivated by these results, various procedures have been developed for selecting proper variables

into the propensity score and outcome regression models. A naive approach is prediction modeling

for the outcome (e.g. Tibshirani, 1996) while specifying the treatment as a fixed covariate in the

model. When used with a small sample size, it may miss confounders that are weakly associated

with the outcome but strongly associated with the treatment (Wilson and Reich, 2014). The omis-

sion of such variables leads to bias but reduces standard error; in some scenarios, it even reduces the

mean squared error (Brookhart et al., 2006). Alternatively, Zigler and Dominici (2014) proposed

a Bayesian model averaging approach based on a PS model and an outcome model conditional

on the estimated PS and baseline covariates. Shortreed and Ertefaie (2017) proposed the outcome-

adaptive Lasso, which penalizes the coefficients of a propensity score model inversely proportional

to their coefficients in a separate outcome regression model. Ertefaie et al. (2018) proposed a

variable selection method using a penalized objective function based on both a linear outcome

and a logistic propensity score model. Under a sparse linear outcome model, Antonelli et al.

(2019) proposed a Bayesian approach that uses continuous spike-and-slab priors on the regression

coefficients corresponding to the confounders. The validity of these confounder selection methods
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relies on correct specification of the outcome regression model. If the same outcome model was

used for both PS model selection and causal effect estimation, then the resulting “doubly robust”

estimator (Robins et al., 1994) is no longer doubly robust. In particular, if the outcome regression

model is incorrect, then the selected PS model may miss important confounders, so that estimates

from the PS model, outcome regression model, and hence the “doubly robust” estimator may all

be biased. An additional pitfall of existing methods is that none of them is well-suited for covariate

selection from an ultra-high dimensional feature set, such as the one collected by the ADNI study.

For ultra-high dimensional data, penalization or Bayesian selection methods face challenges in

computational cost and estimation accuracy (Fan and Lv, 2008).

In this paper, we propose Causal Ball Screening (CBS), a novel doubly robust causal effect

estimating procedure that combines an outcome model-free screening step motivated by the ball

covariance (Pan et al., 2018, 2020) with a refined selection and doubly robust estimation step. In

contrast to aforementioned approaches that aim to exclude instruments, our proposal for propensity

score model selection is outcome model-free: it does not require specifications of the outcome

regression model, nor does it involve any smoothness assumptions on the outcome regression.

As a result, the resulting causal effect estimator is doubly robust. Furthermore, to the best of

our knowledge, our method is the first in the causal inference literature that applies to ultra-high

dimensional settings.

The rest of the article is organized as follows. Section 2 introduces background on the target

adjustment set in doubly robust causal effect estimation, and the ball covariance. In Section 3, we

introduce our CBS procedure for doubly robust causal effect estimation with ultra-high dimen-

sional covariates. Section 4 provides theoretical justifications for the CBS. Simulation studies in

Section 5 compare our proposal with several state-of-art methods in their finite-sample perfor-

mance. In Section 6, we apply our method to the ADNI study and estimate the causal effect of tau
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protein level in cerebrospinal fluid on Alzheimer’s behavioral score while accounting for ultra-high

dimensional covariates. We end with a brief discussion in Section 7.

2. Background

2.1 The propensity score

Following the potential outcome framework, we use D to denote a binary treatment assignment,

X = (X(1), . . . , X(p)) to denote baseline covariates, and Y (d) to denote the outcome that would

have been observed under treatment assignment d for d = 0, 1. We assume that the covariates X

are ultra-high dimensional in the following sense.

DEFINITION 1 (Ultra-high dimensionality): We say covariates X are ultra-high dimensional if

the number of covariates p = O {exp(nι)} for some constant ι > 0, where n is the sample size.

We make the stable unit treatment value assumption (Rubin, 1980).

ASSUMPTION 1 (Stable unit treatment value assumption): The potential outcomes for any unit

do not vary with the treatments assigned to other units; for each unit, there are no different forms

or versions of each treatment level, which leads to different potential outcomes.

Under Assumption 1, the observed outcome Y satisfies Y = DY (1)+(1−D)Y (0) (VanderWeele

and Hernan, 2013). Suppose we observe n independent samples from the joint distribution of

(X,D, Y ), denoted by (Xi, Di, Yi), i = 1, . . . , n.We are interested in estimating the average causal

effect (ACE) ∆ = E{Y (1) − Y (0)}. The ACE can be non-parametrically identified under the

following assumptions.

ASSUMPTION 2 (Weak Ignorability): There exists XS such that D ⊥⊥ Y (d) | XS for d = 0, 1,

where S ⊂ {1, . . . , p}.

ASSUMPTION 3 (Positivity): 0 < c 6 P (D = 1 | XS) 6 1− c < 1, where c ∈ (0, 1).
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Rosenbaum and Rubin (1983) introduced the notion of propensity score e(XS) = P (D = 1 |

XS) and showed that under Assumptions 2 and 3, adjusting for the propensity score is sufficient

to remove confounding: D ⊥⊥ Y (d) | e(XS), d = 0, 1.

2.2 Doubly robust estimation

Let êi = ê(XSi ) be the estimated propensity score, and b̂d(X
S
i ) be the estimate of outcome

regression E(Y | D = d,XSi ). The classical doubly robust estimator (Robins et al., 1994) is

defined as

∆̂ =
1

n

n∑

i=1

DiYi − (Di − êi)̂b1(XSi )

êi
− 1

n

n∑

i=1

(1−Di)Yi + (Di − êi)̂b0(XSi )

1− êi
. (1)

It has been shown that ∆̂ is locally semiparametric efficient in the sense that if both the propensity

score and outcome regression model estimates converge to their corresponding true values at

sufficiently fast rates, then asymptotically the variance of ∆̂ achieves the semiparametric efficiency

bound (e.g. Chernozhukov et al., 2018). Furthermore, it is consistent if either the outcome regres-

sion or the propensity model is correctly specified.

2.3 Target adjustment set

We now discuss the target adjustment set of variables to include in the propensity score and

outcome regression models, in order to eliminate bias and reduce variance in the resulting doubly

robust causal effect estimates. We first divide the covariates into four disjoint subsets under the

framework of a causal directed acyclic graph (DAG) (Pearl, 2009). Relevant background on the

DAG framework is provided in Section S1 of the Supplementary Material.

Let XC = {X(j) ∈ pa(Y ) : D and X(j) are d-connected given pa(Y ) \ {X(j)}}, where pa(Y )

denotes the parents of Y . In the following we shall refer to XC as confounders, XP = pa(Y ) \XC

as precision variables,XI = pa(D)\XC as instrumental variables, andXN = X\(XC∪XP∪XI)

as null variables. Figure 1 provides the simplest causal diagram associated with these definitions.

[Figure 1 about here.]
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REMARK 1: Under Assumptions S1 and S2, our definition of confounders is a special case of the

reduced covariate set labelled as Z in de Luna et al. (2011). The instrumental variable is commonly

used to estimate causal effects when Assumption 2 may be violated. Under the causal sufficiency

assumption in the Supplementary Material, our definition of instrumental variable here coincides

with that in the literature (e.g. Wang and Tchetgen Tchetgen, 2018).

If one already adjusts for all the confounders, then conditioning on additional precision variables

and instrumental variables still renders the treatmentD and potential outcome Y (d) conditional in-

dependent; see Proposition S2 in the Supplementary Material and de Luna et al. (2011, Proposition

3) for detailed arguments. Adjusting for the null variables may, however, introduce bias. Consider

the causal DAG with D → Y and D ← XI → Xcollider ← XP → Y. Under our definitions,

Xcollider is a null variable and the empty set is a valid adjustment set. But adjusting for Xcollider

may lead to a biased causal effect estimate due to collider bias (Pearl, 2009).

Previous theoretical and empirical findings suggest that inclusion of instrumental variables in

addition to confounding variables in the adjustment set may result in efficiency loss (Hahn, 1998,

2004; Brookhart et al., 2006; de Luna et al., 2011).

PROPOSITION 1: (Hahn, 2004) Let Assumptions 1–3 and Assumptions S1–S2 in the Supple-

mentary Material hold, and suppose we have two restrictions (R.1) P 6= ∅ and (R.2) I 6= ∅.

Then the semiparametric efficiency bound for estimating ∆ when (R.1) holds is equal to the bound

without the restriction, and the semiparametric efficiency bound for estimating ∆ when (R.2) holds

is lower than the bound without the restriction.

Following these results, our target adjustment set for propensity score and outcome modeling is

A = C∪P . We include the confounders inA to avoid confounding bias, and exclude null variables

to avoid potential collider bias. Motivated by Proposition 1, we shall exclude instruments in A to

reduce variance in the resulting doubly robust causal effect estimator. As inclusion of any subset
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of precision variables P in the adjustment set does not introduce bias or affect efficiency, we do

not attempt to exclude precision variables in the adjustment set.

REMARK 2: In the case that the precision variables are not sparse in the covariate set (but the

confounders are), one would need to further exclude precision variables in the adjustment set.

2.4 The ball covariance

The ball covariance is a generic measure of dependence in Banach space with many desirable

properties (Pan et al., 2020). Importantly, it is entirely model-free for data in Euclidean spaces, and

its empirical version is easy to compute as a test statistic of independence. Furthermore, compared

with other measures of dependence between two random variables such as the mutual information

(Cover and Thomas, 2012) and distance correlation (Székely et al., 2007), the ball correlation does

not require the random variables to have finite moments. It hence provides robustness for data with

a heavy-tailed distribution (Pan et al., 2018).

Specifically, let X ,Y be two random variables on separable Banach spaces (X , ρ) and (Y , ξ),

respectively, where ρ and ξ are distance functions in the respective spaces. And let θ, µ, ν be

probability measures induced by (X, Y ), X , Y , respectively. Denote Bρ(x1, x2) a closed ball in

space (X , ρ) centering in x1 with radius ρ(x1, x2), and Bξ(y1, y2) a closed ball in space (Y , ξ)

centering in y1 with radius ξ(y1, y2).

DEFINITION 2: The ball covariance is defined as the square root of BCov2(X, Y ), which is an

integral of the Hoeffdings dependence measure on the coordinate of radius over poles:

BCov2(X, Y ) =

∫
(θ − µ⊗ ν)2{Bρ(x1, x2)×Bξ(y1, y2)}θ(dx1, dy1)θ(dx2, dy2),

where µ⊗ ν is a product measure on X × Y .

Let δXij,k = I{Xk ∈ Bρ(Xi, Xj)}, where I(·) is an indicator function. Further define δXij,kl =

δXij,kδ
X
ij,l and ξXij,klst = (δXij,kl + δXij,st − δXij,ks − δXij,lt)/2. We can similarly define δYij,k, δ

Y
ij,kl, ξ

Y
ij,klst.
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PROPOSITION 2: (Separability property, Pan et al., 2020) Let (Xi, Yi), i = 1, 2, ..., 6 be i.i.d

samples from the joint distribution of (X, Y ). Then BCov2(X, Y ) = E(ξX12,3456ξ
Y
12,3456).

Pan et al. (2020) show that BCov(X, Y ) = 0 if and only if X is independent of Y . Therefore,

the ball covariance can be used to perform the independent test.

We next introduce the empirical version of ball covariance.

DEFINITION 3: (Empirical ball covariance) The empirical ball covariance BCovn(X , Y ) is

defined as the square root of: BCov2
n(X, Y ) =

1

n6

∑n
i,j,k,l,s,t=1 ξ

X
ij,klstξ

Y
ij,klst.

3. Causal ball screening

In this section, we develop causal ball screening (CBS), a two-step procedure for covariate selec-

tion and causal effect estimation. The first step involves a generic sure independence screening

procedure to screen out most null and instrumental variables while keeping all the confounding

and precision variables. This procedure is based on the conditional ball covariance, a novel concept

we introduce based on the ball covariance (Pan et al., 2018, 2020). The second step is a refined

selection and estimation step that excludes the null and instrument variables and estimates the

average causal effect.

3.1 Conditional ball covariance screening

When the candidate feature set is ultra-high dimensional, a common strategy is to use the sure in-

dependence screening procedure based on marginal (Fan and Lv, 2008) or conditional correlations

(Barut et al., 2016). From Figure 1, if the DAG is faithful, then one can read off the following

(conditional) (in)dependences:

XC 6⊥⊥ Y, | D XP 6⊥⊥ Y, | D XI 6⊥⊥ Y, | D XN ⊥⊥ Y ; | D (2)

XC 6⊥⊥ Y | D, XP 6⊥⊥ Y | D, XI 6⊥⊥ Y | D, XN ⊥⊥ Y | D. (3)

On the surface, it seems that independence screening based on (2) or (3) works equally well. In
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practice, however, note that the dependence between XI and Y after conditioning on D is induced

by collider bias. Previous qualitative analyses (Ding and Miratrix, 2015) and numerical analysis

(Liu et al., 2012) show that collider bias tends to be small in many realistic settings. Consequently,

we perform our screening based on (3) under the assumption that the instrumental variables XI

have weaker dependence with the outcome Y after conditioning on the treatment variable D, and

hence are more likely to be screened out by the conditional independence screening.

To perform conditional independence screening based on (3), we first introduce the notion of

conditional ball covariance. Let ω = P (D = 1) be the probability of receiving treatment. Let

X(d), Y (d), d = 0, 1 be random variables such that (X(d), Y (d))
d
= (X, Y | D = d), d = 0, 1.

The conditional ball covariance between X and Y given D is defined as the square root of

BCov2(X, Y | D) = ωBCov2(X(1), Y (1)) + (1− ω)BCov2(X(0), Y (0)).

Analogously, we can define the sample version of the conditional ball covariance. Let n1 =

∑n
i=1Di be the number of subjects who receive treatment and n0 = n − n1. Let ω̂ = n1/n be

the empirical estimator of ω.

DEFINITION 4: The empirical conditional ball covariance BCovn(X, Y | D) is defined as

the square root of: BCov2
n(X, Y | D) = ω̂

∑
(i,j,k,l,s,t):Di,Dj ,Dk,Dl,Ds,Dt=1 ξ

X
ij,klstξ

Y
ij,klst/n

6
1 + (1 −

ω̂)
∑

(i,j,k,l,s,t):Di,Dj ,Dk,Dl,Ds,Dt=0 ξ
X
ij,klstξ

Y
ij,klst/n

6
0.

The following proposition is an extension of Lemma 2.1 in Pan et al. (2018).

PROPOSITION 3: BCov(X, Y | D) = 0⇔ X ⊥⊥ Y | D.

To perform conditional ball covariance screening, as summarized in the first two steps of Algo-

rithm 1, we first calculate the empirical conditional ball covariance between the outcome Y and

each baseline covariate X(j), j = 1, . . . , p, and then select q baseline covariates with the largest

ball covariance into the next step. Let K be the selected set after the screening step. Without loss

of generality, we assume K = {1, 2, . . . , q}.
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3.2 Refined selection and doubly robust estimation

There may be instrumental variables and null variables remaining in the set K after the screening

step. We now propose a second refined selection step to further exclude these variables. To estimate

parameters in the outcome regression models on bd(X), d = 0, 1, we use the Lasso estimator

(Tibshirani, 1996) that

α̂
(d)
K = argmin

αK

{ ∑

i:Di=d

(Yi −XT

i,KαK)2 + λ
(d)
Y ||αK||1

}
, d = 0, 1. (4)

In practice, we use 10-fold cross-validation to select the tuning parameters λ(d)
Y , d = 0, 1.

Refined selection for the propensity score model is more involved. As we explained in the

introduction, for double robustness of the resulting causal effect estimator, selection of the PS

model should not depend on the outcome regression model. So we shall apply the idea of adaptive

Lasso (Zou, 2006; Shortreed and Ertefaie, 2017) to our setting. Specifically, let

β̂K = argmin
βK

(
n∑

i=1

[
Di log

{
1− e(Xi,K; βK)

e(Xi,K; βK)

}
− log {1− e(Xi,K; βK)}

]
+λD

q∑

j=1

1

ω̂j
|βj|
)
,

(5)

where ω̂j is a nonparametric estimator of the importance of covariate X(j) in the outcome model,

λD is a tuning parameter and the propensity score follows a logistic regression model that e(X; β) =

expit(XTβ) = exp(XTβ)/{1 + exp(XTβ)}. In practice, ω̂j can be obtained based on the inverse

of the conditional mutual information (Berrett et al., 2019), the conditional distance correlation

(Wang et al., 2015), or the conditional ball covariance introduced in Section 3.1. In the simulations

and data analysis, we let ŵj = |ẑ BCov2
n(X(j), Y | D)|γ , where γ is a tunning parameter and

ẑ = 1/maxj |BCov2
n(X(j), Y | D)| is a scale constant. We then select the pair of parameters

(γ, λD) that minimize the weighted absolute mean difference (Shortreed and Ertefaie, 2017)

wAMD(λD, γ) =

q∑

j=1

|βj| ×
∣∣∣∣∣

∑n
i=1 τ̂

λD,γ
i X

(j)
i Di∑n

i=1 τ̂
λD,γ
i Di

−
∑n

i=1 τ̂
λD,γ
i X

(j)
i (1−Di)∑n

i=1 τ̂
λD,γ
i (1−Di)

∣∣∣∣∣ ,

where τ̂λD,γi = Di/êi
λD,γ + (1−Di)/(1− êiλD,γ) and êλD,γi is the estimated propensity score with

pair of parameters (λD, γ).

Finally, we use plug-in estimators êi = ê(Xi; β̂) and b̂d,i = XT
i α̂

(d) to construct a doubly robust
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Algorithm 1 Causal Ball Screening: A doubly robust estimator of average causal effect with ultra-

high dimensional covariates

Input: (Xi, Yi, Di)
n
i=1 Output: ∆̂

1: For j = 1, . . . , p, calculate ρ̂j = BCov2
n(X(j), Y | D).

2: Select the q variables with the largest ρ̂j , and denote them as K; without loss of generality, let

K = {1, . . . , q}.

3: For d = 0, 1, set {α̂(d)}T =
((
α̂

(d)
K

)T

, 0T

)
, where α̂(d)

K is the Lasso estimator obtained via (4).

4: Set β̂T = (β̂T
K, 0

T), where β̂K is the adaptive Lasso estimator obtained via (5).

5: For i = 1, . . . , n, calculate êi = ê(Xi; β̂) and b̂d,i = bd(Xi; α̂
(d)).

6: Plug b̂d,i, êi, d = 0, 1, i = 1, . . . , n into equation (1) to obtain a doubly robust estimator ∆̂.

estimator of ∆ based on equation (1). These procedures are summarized in Steps 3–6 of Algorithm

1.

4. Theoretical Properties

In this section, we study theoretical properties of the proposed CBS procedure as outlined in

Algorithm 1. We first show the sure independence screening property, which guarantees that the

set K selected by the conditional ball covariance screening procedure in Section 3.1 includes all

the confounders and precision variables with high probability. The following two assumptions are

common in the sure independence screening literature.

(A1): (Minimal strength) There exist constants c > 0 and 0 6 κ < 1/2 such that: min
j∈XC∪XP

ρj > 2cn−κ,

where ρj = BCov2(X(j), Y | D);

(A2): (Ultra-high dimensional covariates) log(p) = o(n1−2κ), where κ is defined in (A1).

Condition (A1) specifies the minimum marginal association strength that can be identified by our

screening procedure. Condition (A2) allows the dimension of covariates to grow exponentially

with the sample size.
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Theorem 1 shows that we may select the top q variables with the largest ρ̂j .

THEOREM 1: (Sure independence screening property) Assume that W = {j : ρj = 0} and

|W c| 6 q, where | · | denotes the cardinality. Then under conditions (A1) and (A2), we have

P (maxj∈W ρ̂j < minj∈A ρ̂j)→ 1 and hence P ((XC ∪XP) ⊂ K)→ 1 as n→∞.

We then present theoretical guarantees for the variable selection and estimation step. We assume

that the data-driven weights ŵj and tuning parameters satisfy the following conditions:

(B1): (Convergence inside the target set) For each j ∈ A, ŵj
p−→ cj , where cj is a positive constant;

(B2): (Uniform convergence to zero outside of the target set) There exists some constant s > 0 such

that for all j ∈ Ac, ŵj = Op(n
−s);

(B3): λD/
√
n→ 0, λDns−1 →∞, and for d = 0, 1, λ

(d)
Y /n1/2 →∞, λ(d)

Y /n2/3 → 0;

(B4): XT
AXA/n−→C, where C is a positive definite matrix;

(B5): A ⊂ K.

Conditions (B1) and (B2) are rate conditions on the data-driven weight ŵj that are standard in

the adaptive Lasso literature (e.g. Zou, 2006). Condition (B3) requires that the tuning parameters

λD, λ
(d)
Y , d = 0, 1 satisfy some rate conditions. Condition (B4) holds as long as X ′is are i.i.d. with

finite second moments. Condition (B5) assumes that the set K we select in the screening step

includes all the variables in the target adjustment set. A necessary condition for (B5) is that the

cardinality of the target adjustment setA is no larger than q. Under this condition, due to Corollary

1, Condition (B5) holds with high probability.

THEOREM 2: Under Conditions (B1) – (B5) and Assumptions 1–3, we have:

(a). (Variable selection consistency for the outcome model) Let ÂOR = {j : α̂
(d)
j 6= 0 for d = 0 or 1}.

Suppose that the outcome regression model satisfies a linear relationship:

Y = DXT

Aα
(1)∗
A + (1−D)XT

Aα
(0)∗
A + ε, (6)

where ε is a random noise with mean 0 and variance σ2. Then limn→∞P (ÂOR = A) = 1.
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(b). (Variable selection consistency for the propensity score model) Let ÂPS = {j : β̂j 6= 0}. If the

underlying propensity score model e(XA) is such that

e(XA) = P (D = 1 | XA) = expit(XT

Aβ
∗
A). (7)

Then limn→∞P (ÂPS = A) = 1.

(c). (Double robustness) Assume the estimated propensity score model e(Xi; β̂) and outcome model

bd(Xi; α̂
(d)) converge to some e0(X) and b0

d(X) in the sense that

1

n

n∑

i=1

{e(Xi; β̂)− e0(Xi)}2 = op(1),
1

n

n∑

i=1

{bd(Xi; α̂
(d))− b0

d(Xi)}2 = op(1).

Then (∆̂−∆)
p−→ 0 if either (6) holds and ÂOR = A, or (7) holds and ÂOR = A.

(d). (Oracle asymptotic distribution) Assume that ÂPS = ÂOR = A. Then under models (6) and (7),

1.
√
n(∆̂−∆) =

∑n
i=1{φ(Yi, b1(Xi,A), b0(Xi,A), e(Xi,A), Di,∆)}/√n+ op(1);

2.
√
n(∆̂−∆)V

−1/2
∆

d−→ N(0, 1);

3. V∆ − V̂∆ = op(1);

4. |P{∆ ∈ [∆̂− cmV̂ 1/2
∆ /
√
n, ∆̂ + cmV̂

1/2
∆ /
√
n]} − (1−m)| → 0,

where φ(Y, b1(X), b0(X), e(X), D,∆) =
D{Y − b1(X)}

e(X)
− (1−D){Y − b0(X)}

1− e(X)
+ b1(X)−

b0(X) − ∆, En(O) =
1

n

n∑
i=1

Oi, m ∈ (0, 1) is the significance level, cm = Φ−1(1 −m/2), V∆ =

E{φ2(Y, b1(XA), b0(XA), e(XA), D,∆)} and V̂∆ = En{φ2(Yi, b1(Xi; α̂
(1)), b0(Xi; α̂

0), e(Xi; β̂), Di, ∆̂)}.

REMARK 3: Theorem 2(a) is parallel to Theorem 1 in Zhao and Yu (2006). Theorem 2(b) is

parallel to Theorem 4 in Zou (2006) and Theorem 1 in Shortreed and Ertefaie (2017).

Our results in Theorem 2 (c) and (d) depend on correct selection of the target adjustment set

A. As such, the resulting uncertainty estimates do not take into account of the uncertainty in the

selection of target adjustment set. In other words, as we aim to exclude instruments in our adjust-

ment set, our procedure does not permit uniform valid inference. See Leeb and Pötscher (2005)

for discussions of similar phenomena in other contexts involving variable selection. Alternative

procedures that include instruments in the adjustment set are available (e.g. Van der Laan, 2014;
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Farrell, 2015; Chernozhukov et al., 2018). In theory, these procedures are uniformly valid and

should perform better in the worst-case scenario in which confounders are only weakly related

to the outcome. However, in many practical situations, they pay a high price in terms of variance

due to inclusion of instrumental variables. For example, Brookhart et al. (2006) show that with

small samples, the inclusion of variables that are strongly related to the exposure but only weakly

related to the outcome can be detrimental to an estimate in a mean-squared error sense. We refer

readers to Moosavi et al. (2021) for a recent discussion on the dilemma between uniform validity

and efficiency in performing variable selection in causal inference problems. We also illustrate this

tradeoff via simulation studies in Section 5.

5. Simulation Studies

In this section, we evaluate the finite-sample performance of the proposed method. We consider

four different combinations of sample size n and covariate dimension p: (n, p) = (300, 100),

(300, 1000), (600, 200), (600, 2000). The covariates X(j), j = 1, . . . , p are independently gener-

ated from the uniform distribution on (−1, 1). The binary treatment D is then generated from a

Bernoulli distribution with P (D = 1 | X) = expit(XTβ), where β ∈ Rp such that β1 = β2 = 0.2,

β5 = β6 = 0.3 and βj = 0, j /∈ {1, 2, 5, 6}. Given D and X , the outcome Y is generated from the

following model: Y = α0+XTα+D∆+ε, where ε ∼ N(0, 1), ∆ = 2, α0 = 0, αj = 2, 1 6 j 6 4

and αj = 0, j > 5. Note that in our simulations, both the outcome regression and propensity score

models are sparse.

We compare the following methods for estimating the average causal effect:

(i) CBS: The proposed Algorithm 1, where we select the top 30 covariates in Step 2;

(ii) Outcome adaptive Lasso (OAL): We use the R code provided in Shortreed and Ertefaie (2017)

to estimate the propensity score. Note that the method by Shortreed and Ertefaie (2017) cannot

directly handle the cases with p > n. For those scenarios, we first apply a conditional sure-
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independence screening procedure on D (Barut et al., 2016) and select the top 30 covariates.

We then apply the method of Shortreed and Ertefaie (2017) on the selected set. We use Lasso

to estimate b̂d(Xi), and the tuning parameter is selected via 10-fold cross-validation.

(iii) Robust Inference (RI, Farrell, 2015): We use Lasso to fit the propensity score model, and the

group-Lasso method implemented in grpreg to fit the outcome model. The estimates ê(Xi) and

b̂d(Xi) are then plugged into (1) to obtain the causal effect estimate. The tuning parameters are

selected via 10-fold cross-validation.

(iv) Double/Debiased Machine Learning (DBML, Chernozhukov et al., 2018): We implement the

cross-fitting estimator with finite-sample adjustment using the median method; here we repeat 10-

fold random partitions five times and take their median.

[Table 1 about here.]

Table 1 reports the biases and mean squared errors of various ACE estimators, as well as the

empirical coverage of 95% Wald-type confidence intervals based on 1,000 Monte Carlo runs. For

Table 1, we fit the correct propensity score and outcome regression models for all four estimating

methods. The CBS and OAL perform much better than the RI and DBML methods, suggesting

that at least for the simulation settings we consider, excluding instrumental variables significantly

improve the efficiency and reduce the MSE of the resulting doubly robust estimator. We also notice

that the performance of the RI method deteriorates quickly with the covariate dimension p, while

DBML performs the worst under the settings we consider.

We further compare these four estimators in terms of their double robustness. In the following,

we consider a low-dimensional setting with (n, p) = (2000, 100). The treatment D and outcome

Y are generated via the following equations:

(Outcome model): Y = 2(X1 +X2) + 2(X2
3 +X2

4 ) +D∆ + ε;

(Propensity score model): logit{P (D = 1 | X)} = 0.2(X1 +X2) + 0.3(X5 +X6) + ε.

To examine double robustness, we consider settings where the outcome regression or the propensity
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score model may be misspecified. In these settings, the analyst assumes that the propensity score

model is a logistic regression with predictors
{(
X(j)

)2
; j = 1, . . . , p

}
, and/or that the outcome

model is linear with predictors D and {X(j)2
; j = 1, . . . , p}. Figure 2 shows boxplots of estimates

from the four estimators under different combinations of correct/incorrect specifications of the

outcome regression and propensity score models. One can see that ∆̂CBS , ∆̂RI , and ∆̂DBML are

consistent as long as at least one of the outcome regression or the propensity score model is

correctly specified, thus exhibiting double robustness. In contrast, ∆̂OAL is not consistent when

the propensity score model is correctly specified but the outcome regression model is not, as it

relies on the outcome regression model for confounder selection in the propensity score model.

[Figure 2 about here.]

6. Real data application

In this session, we analyze data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (adni.loni.usc.edu). The data use acknowledgement is included in the Data Availability

Statement Section. We consider the clinical, genetic, and behavioral measures in the ADNI data

set. The exposure of interest is the tau protein level in cerebrospinal fluid (CSF) observed at

Month 12. Tau is a microtubule-associated protein that promotes microtubule polymerization and

stabilization (Kametani and Hasegawa, 2018). Studies (Iqbal et al., 2010) have found that tau

protein abnormalities initiate the Alzheimer’s Disease (AD) cascade and cause neurodegeneration

and dementia. Under physiological conditions, tau regulates the assembly and maintenance of

the structural stability of microtubules. In a diseased brain, however, tau becomes abnormally

hyperphosphorylated, which ultimately causes the microtubules to disassemble, and the free tau

molecules aggregate into paired helical filaments (Medeiros et al., 2011). Scientists have found

that CSF-tau was markedly increased in Alzheimer’s disease (Blennow et al., 2015). In this study,
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we go beyond association and study whether the CSF-tau protein level affects the severity of the

Alzheimer’s Disease.

We dichotomize the CSF-tau protein level using the cutoff value 350 pg/mL (Tapiola et al., 2009),

i.e. D = 1 if CSF-tau protein level is over 350 pg/mL, and D = 0 otherwise. The severity of the

AD is measured by the 11-item Alzheimer’s Disease Assessment Scale (ADAS-11) cognitive score

observed at Month 24, a widely used measure of cognitive behavior ranging from 0 to 70. A higher

ADAS-11 score indicates greater severity of AD.

In our analysis, we adjust for clinical and behavioral covariates, including baseline age, gender,

and education length, as they are widely considered as the main risk factors for AD (e.g. Guerreiro

and Bras, 2015; Vina and Lloret, 2010). We also consider genetic covariates extracted from whole-

genome sequencing data from all of the 22 autosomes. We provide details of how we preprocess

the genetic data in the Supplementary Material. After pre-processing, 6, 087, 205 bi-allelic markers

(including SNPs and indels) were retained in the data analysis.

The data set has 268 subjects with complete information on CSF tau protein data, the Month

24 ADAS-11 score and genetic information. Among these subjects, 82 have CSF-tau protein level

above the cut-off point. The mean (SD) age in the high/low tau-protein group is 75.8(7.28) and

75.3(6.55) years old, respectively, and the mean (SD) education length in the high/low tau-protein

group is 15.3(3.05) and 15.9(2.99) years, respectively. The two groups are unbalanced in terms of

gender: 54.9% of study participants in the high tau-protein group are female, while 64.0% of study

participants in the low tau-protein group are female. We nevertheless include all three covariates

as they were determined a priori. In the Supplementary Material, we report sensitivity analysis in

which we adjust for more baseline clinical and behavioral covariates. Analysis results show that

adjusting for these additional covariates has minimal effects on the results we obtained.

Denote as Z the covariates age, gender and education length. We first fit a linear regression Y ∼

Z to adjust for these clinical covariates. We then apply Steps 1-2 of our CBS procedure using the
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fitted residuals from the linear regression as the outcome and select the top 30 genetic covariates.

We list the top 10 SNPs in Table 2. All of them are located on Chromosome 19 and have previously

been found to be strongly associated with Alzheimer’s. See Table S1 in the Supplementary Material

for a list of references for the SNPs reported in Table 2.

[Table 2 about here.]

Since some SNPs selected through our first step screening are perfectly correlated, we only keep

one among a group of SNPs whose genotypes are identical to each other for the subsequent analy-

sis. We further apply our refined selection procedure in Section 3.2 on these selected covariates and

the covariates age, gender and education length, where the coefficients corresponding to the three

clinical and behavioral covariates are not penalized. Finally, we use the doubly robust estimator

(1) to estimate the average causal effect of CSF-tau protein level on the ADAS-11 score. Analysis

results suggest that, on average, being in the high-level CSF-tau group will raise the ADAS-11

score by 5.96 (95% CI = [4.15, 7.76]) points.

In addition to varying the adjusted confounders, in Section S4.3 of the Supplementary Material,

we also describe sensitivity analysis varying the number of covariates selected in the first screening

step. Tables S2 and S3 suggest that our selection and estimation procedures are relatively robust to

the choice of adjusted confounders and the number of covariates selected in the screening step.

7. Discussion

In this paper, we propose a novel selection and estimation procedure for doubly robust causal

inference with ultra-high dimensional covariates, called causal ball screening. In comparison to

previous approaches that use the same outcome model for propensity score model selection and

causal effect estimation, the estimator we propose is doubly robust. Moreover, as we illustrate in

the real data analysis, it can be applied to select variables important for causal inference from

millions of baseline covariates.
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We have so far considered causal effect estimation using the classical doubly robust estimator

by Robins et al. (1994). Our developments can also be combined with other techniques for causal

effect estimation, such as the covariate balancing propensity score (Imai and Ratkovic, 2014) and

the subclassification weights (Wang et al., 2016). This is left as future work.
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D Y XN

XI XC XP

Figure 1. A causal directed acyclic graph illustrating the four types of baseline covariates:
confounders XC , precision variables XP , instrumental variables XI and null variables XN
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Figure 2. Boxplots of causal effect estimates obtained by ∆̂OAL, ∆̂CBS , ∆̂RI and ∆̂DBML. The
horizontal red lines correspond to the true causal effect ∆ = 2. Results are based on 1,000 Monte
Carlo runs. This figure appears in color in the electronic version of this article, and any mention of
color refers to that version.
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Table 1
Simulation results based on 1, 000 Monte Carlo runs. Both the propensity score and outcome regression models are correctly
specified. We report bias ×100, MSE ×100, and the empirical coverage probability for each estimator. The nominal coverage

probability is 95%. Standard errors of bias and MSE are reported in parentheses. Bold numbers represent the best result in each
scenario

(n,p) Method Bias× 100(SE × 100) MSE × 100(SE × 100) Empirical coverage× 100%

(300, 100)

OAL 1.3(0.37) 1.4(0.064) 93.5
CBS 0.97(0.38) 1.5(0.066) 94.3
RI 1.5(0.76) 5.8(0.96) 92.5
DBML* 8.5(39) 1.5× 104(2.9× 103) 98.3
DBML 2.7× 105(2.8× 105) 7.7× 1011(7.7× 1011) 98.4

(300, 1000)

OAL 1.8(0.39) 1.6(0.075) 92.6
CBS 1.6(0.40) 1.6(0.076) 92.2
RI 19(0.91) 12(2.2) 51.7
DBML* 10 (37) 1.3× 104(2.2× 103) 98.5
DBML 7.3× 102(6.6× 102) 4.4× 106(3.5× 106) 98.5

(600, 200)

OAL 0.28(0.26) 0.68(0.030) 94.9
CBS 0.04(0.26) 0.68(0.030) 95.6
RI 2.3(0.59) 3.6(1.1) 91.6
DBML* 16 (23) 5.3× 103(1.4× 103) 98.3
DBML 8.1× 102(7.1× 102) 5.0× 106(5.0× 106) 98.3

(600,2000)

OAL 0.58(0.27) 0.71(0.030) 94.0
CBS 0.22(0.27) 0.71(0.030) 94.2
RI 13(0.51) 4.3(0.55) 55.9
DBML* 16(1.9× 102) 2.1× 104(1.4× 102) 98.2
DBML 1.2× 102(3.1× 102) 9.5× 105(3.6× 105) 98.4

For DBML*, we exclude Monte Carlo runs for which the bias of DBML estimate is greater
than 100. For (n, p) = (300, 100), (300, 1000), (600, 200) and (600, 2000), we exclude
(35, 23, 11, 26) runs out of 1000.
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Table 2
The top ten SNPs selected by Steps 1-2 of our CBS procedure

Rank SNP name Gene Chromosome number

1 rs429358 ApoE 19
2 rs56131196 ApoC1 19
3 rs4420638 ApoC1 19
4 rs12721051 ApoC1 19
5 rs769449 ApoE 19
6 rs10414043 ApoC1 19
7 rs7256200 ApoC1 19
8 rs73052335 ApoC1 19
9 rs111789331 ApoC1 19

10 rs6857 NECTIN2 19


